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Abstract  
_________________________________________________________   

Quantitative structure-property relationship (QSPR) models, which 
could predict odor threshold of aliphatic alcohols, were developed by 
applying chemical descriptors computed with quantum chemical PM3 
algorithm and using linear and nonlinear method, respectively. Both of 
the models gave acceptable results. The model of nonlinear radial basis 
function neural networks (RBFNN) leads to a squared correlation 
coefficient (R2) of 0.76 and root-mean-square error (RMS) of 0.528 for 
the test set and the values for linear model are 0.62 and 0.689 
respectively. The QSPR models provide a rapid, simple and valid way 
to predict the odor threshold of aliphatic alcohol. 
_________________________________________________________

1. Introduction 
 
The presence of airborne chemicals known as 
volatile organic compounds (VOCs) in the 
environment, including the home and the 
workplace, can lead to sensory irritation of the 
upper airways, a widely cited health effect from 
polluted indoor air [1, 2]. As is well known, 
VOCs also play a major role in the formation of 
various secondary pollutants through 
photochemical reactions in the presence of 
sunlight and nitrogen oxides [3, 4]. The number 
of industrial chemicals exceeds 100,000, of 
which perhaps one-third (30,000) could be 
classified as volatile organic compounds. It is 

clearly not economical to obtain sensory 
irritation data either directly on humans or 
indirectly from an animal assay for more than a 
very small proportion of VOCs that could be 
encountered in everyday life. A key issue in 
understanding human chemosensory perception 
involves knowledge of the relevant structural and 
physicochemical properties of chemicals that 
govern potency, i.e., absolute detection, and 
perceptual quality. 

To better understand the sensory irritation of 
chemicals, odor threshold value is important. The 
odour threshold value of a volatile compound is 
defined as the minimum concentration at which 
the compound can be detected by the sense of
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smell. The odour threshold value of aliphatic 
alcohols is important since alcohols are widely 
used in food, perfume, cosmetic, detergents and 
other industries [5, 6]. 

There have been a number of correlations of 
odor detection thresholds (ODT) with various 
properties of odorant. The study by Laffort and 
Patte was the first to employ a physicochemical 
analysis [7]. Mihara and Masuda used a two-term 
regression equation to model the logarithm of the 
odor threshold of 60 disubstituted pyrazines [8].  
Seeman et al. studied the odor profile of 
structurally similar pairs of 1,3-dialkylbenzenes 
and 2,6-dialkylpyridines as a function of the 
accessibility of the nitrogen atom and steric 
hindrance [9]. Winter related the activity of a 
series of ambergris-type odorants to a minimum 
accessible surface area about the ether oxygen in 
the molecule [10]. Edwards and Jurs also used 
discriminant analysis to study the ability of 
odorant molecules to stimulate activity of the 
enzyme adenylate cyclase [11]. Latter, computer 
assisted statistical methods have been used to 
study the odor thresholds of two sets of odor 
active molecules by the same authors. One data 
set included 53 aliphatic alcohols; the second 
data set included 74 mono and di-substituted 
pyrazine derivatives [12]. Chastrette has 
reviewed work up to 1996 [13]. Yamanaka 
showed that odour thresholds for several 
homologous series could be correlated with the 
odorant activity coefficient in water [14]. 
Abraham performed a model for odour 
thresholds for a series of 64 compounds, 
including esters, aldehydes, ketones, alcohols, 
carboxylic acids, aromatic hydrocarbons, 
terpenes and some of other VOCs [15].  

All of previous studies attempt to produce an 
easy, accurate, and predictive model using 
different descriptors or methods. However, some 
models have been developed for relatively small 
data set of compounds. Most study attempts to 
produce the model with physic- 
chemical properties， not using the calculated 
molecular descriptors. Additionally, previous 
studies scarcely use none linear statistical 
technique to build model. The aim of the present 

work is to devise quantitative structure-property 
relationships (QSPRs) that could be used to 
correlate odor thresholds with relevant molecular 
descriptors calculated from chemical software 
alone by both linear and none linear methods, 
and thereby to approach prediction of such 
thresholds. The structural factors affecting the 
compounds’ odor thresholds values were also 
investigated. 

 
2. Materials and methods 

2.1. Dataset 

The odor threshold data for the 97 aliphatic 
alcohols was collected from the work of 
Schnabel et al.[16].                   

Concentration units of the experimental odor t
hreshold were ppm. The data of the mean values 
of the reported range were transformed in 
logarithmic unit to linearize the experimental 
range of variation.  The data set was split into a 
training set and a prediction set. The prediction 
set of 19 alcohols was selected randomly from 
the original 97 compounds with the remaining 
compounds constituting the training set. The 
training set of 78 compounds was used to adjust 
the parameters of the model, and the test set of 
19 compounds was used to evaluate its predictive 
ability. A complete list of the compounds’ name, 
their data set and corresponding LogT was shown 
in Table 1. 

 
2.2. Generation of the descriptors 
 

The calculation process of the molecular 
descriptors was described as below: molecules 
were drawn with Hyperchem and then 
pre-optimised using MM+ molecular mechanics 
force field [17]. A more precise optimisation was 
then done with the semi-empirical PM3 method 
in MOPAC6.0 [18]. All calculations were carried 
out at a restricted Hartree-Fock level with no 
configuration interaction. The molecular structur- 
es were optimised using the Polak-Ribiere 
algorithm until the root-mean -square gradient 
reached 0.001. The resulting geometry was 
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transferred into software CODESSA that can 
calculate constitutional, topological, electrostatic, 

and quantum chemical descriptors [19, 20]

Table 1 Chemicals, experimental, MLR and RBFNN predicted LogT 
 Log T  

No.  Chemical Name Experimental MLR RBFNN 
 Training set    

1 Methanol 1.52 1.323 1.733 
2 Propan-1-ol 3.96 3.553 3.677 
3 Propan-2-ol 3.04 2.929 3.342 
4 Butan-1-ol 4.77 4.535 4.308 
5 Butan-2-ol 3.47 3.339 3.390 
6 2-Methylpropan-2-ol 3.87 3.611 3.841 
7 Pentan-1-ol 4.54 5.023 5.145 
8 Pentan-2-ol 3.89 5.120 5.130 
9 Pentan-3-ol 4.11 4.251 5.007 
10 3-Methylbutan-1-ol 4.69 4.543 4.916 
11 2-Methylbutan-2-ol 3.54 4.486 5.031 
12 3-Methylbutan-2-ol 5.19 4.681 5.096 
13 2,2-Dimethylpropan-1-ol 4.79 5.196 4.721 
14 Hexan-2-ol 5.70 5.569 5.833 
15 Hexan-3-ol 4.86 5.039 5.289 
16 2-Methylpentan-1-ol 5.01 5.112 5.057 
17 3-Methylpentan-1-ol 4.75 4.873 5.003 
18 2-Ethylbutan-1-ol 5.75 5.261 5.305 
19 2,2-Dimethylbutan-1-ol 4.24 4.770 4.275 
20 2,3-Dimethylbutan-1-ol 4.86 5.020 4.740 
21 3-Methylpentan-2-ol 4.74 5.145 4.392 
22 4-Methylpentan-2-ol 5.59 4.972 4.542 
23 2,3-Dimethylbutan-2-ol 5.59 5.220 4.657 
24 3,3-Dimethylbutan-2-ol 4.60 5.304 4.666 
25 3-Methylpentan-3-ol 4.51 4.738 4.996 
26 Heptan-1-ol 5.43 5.659 5.499 
27 Heptan-2-ol 6.31 5.810 5.488 
28 Heptan-3-ol 5.57 5.481 5.486 
29 5-Methylhexan-1-ol 5.38 5.601 5.498 
30 2,2-Dimethylpentan-1-ol 6.81 6.400 7.287 
31 2,3-Dimethylpentan-1-ol 5.00 5.480 5.492 
32 2,4-Dimethylpentan-1-ol 5.58 5.461 5.225 
33 3-Methylhexan-2-ol 5.81 5.642 5.526 
34 5-Methylhexan-2-ol 5.40 5.588 5.455 
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35 3-Ethylpentan-2-ol 5.55 5.744 5.357 
36 2,3-Dimethylpentan-2-ol 4.65 5.300 5.489 
37 4,4-Dimethylpentan-2-ol 6.31 6.236 6.306 
38 2-Methylhexan-3-ol 6.28 5.779 5.543 
39 3-Methylhexan-3-ol 6.28 5.623 5.533 
40 4-Methylhexan-3-ol 5.63 5.594 5.532 
41 3-Ethylpentan-3-ol 6.29 5.471 5.578 
42 2,2-Dimethylpentan-3-ol 6.31 6.135 6.477 
43 2,3-Dimethylpentan-3-ol 5.29 5.178 5.405 
44 2,4-Dimethylpentan-3-ol 5.80 5.492 5.469 
45 Octan-2-ol 6.86 5.940 5.773 
46 Octan-3-ol 5.97 5.754 5.856 
47 Octan-4-ol 5.36 6.106 5.827 
48 2-Methylheptan-2-ol 5.72 6.125 5.881 
49 2-Methylheptan-3-ol 5.48 6.164 5.845 
50 3-Methylheptan-3-ol 6.86 5.915 5.966 
51 4-Methylheptan-3-ol 5.63 5.955 5.925 
52 5-Methylheptan-3-ol 6.37 5.554 5.724 
53 4-Ethylhexan-3-ol 6.06 5.906 5.911 
54 2-Ethylhexan-1-ol 5.07 6.198 5.820 
55 2,3-Dimethylhexan-2-ol 5.39 5.845 5.952 
56 2,5-Dimethylhexan-2-ol 4.96 5.752 5.662 
57 2,2-Dimethylhexan-3-ol 7.76 6.714 7.491 
58 2,3-Dimethylhexan-3-ol 6.86 5.992 5.997 
59 2,4-Dimethylhexan-3-ol 5.61 5.764 5.824 
60 2,5-Dimethylhexan-3-ol 5.20 5.719 5.666 
61 2,2,4-Trimethylpentan-3-ol 6.86 6.613 6.758 
62 2,2,4-Trimethylpentan-1-ol 5.35 5.311 5.645 
63 2-Methylheptan-4-ol 5.36 6.085 5.792 
64 3-Methylheptan-4-ol 5.86 5.814 5.871 
65 Nonan-1-ol 6.39 6.099 6.064 
66 Nonan-2-ol 6.32 6.139 6.049 
67 Nonan-3-ol 6.00 5.877 6.102 
68 Nonan-4-ol 5.88 6.440 6.055 
69 Decan-1-ol 7.33 6.334 6.261 
70 Decan-2-ol 6.70 6.277 6.262 
71 Decan-3-ol 5.95 6.087 6.357 
72 Undecan-1-ol 5.96 6.484 6.417 
73 Undecan-3-ol 6.96 6.374 6.336 
74 Undecan-4-ol 6.47 6.357 6.410 
75 Undecan-5-ol 5.47 6.569 6.440 
76 Undecan-6-ol 6.96 6.673 6.423 
77 Dodecan-2-ol 6.51 6.538 6.581 
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78 Dodecan-3-ol 6.49 6.479 6.626 
 Test set    

1 2-Methylpropan-1-ol 3.77 4.330 4.347 
2 2-Methylbutan-1-ol 5.44 4.370 5.039 
3 Hexan-1-ol 4.90 5.419 5.008 
4 4-Methylpentan-1-ol 4.75 5.039 5.219 
5 2-Methylpentan-2-ol 4.25 5.517 4.319 
6 2-Methylpentan-3-ol 5.24 5.059 5.077 
7 Heptan-4-ol 5.30 5.675 5.502 
8 2-Methylhexan-2-ol 4.70 5.679 5.570 
9 2,4-Dimethylpentan-2-ol 4.57 5.903 5.546 
10 5-Methylhexan-3-ol 5.31 5.065 5.146 
11 Octan-1-ol 6.34 5.923 5.811 
12 6-Methylheptan-2-ol 6.02 6.039 5.855 
13 6-Methylheptan-3-ol 5.61 5.726 5.835 
14 3,4-Dimethylhexan-2-ol 4.84 5.765 5.847 
15 3,5-Dimethylhexan-3-ol 5.42 5.610 5.875 
16 4-Methylheptan-4-ol 5.28 6.158 5.878 
17 Nonan-5-ol 6.00 6.336 6.070 
18 Undecan-2-ol 6.96 6.578 6.200 
19 Dodecan-1-ol 5.98 6.704 6.476 

In the present work, 388 descriptors were 
provided. Of them, 38 are constitutional, 38 are 
topological, 12 are geometrical, 73 are 
electrostatic and 220 are quantum chemical 
descriptors. In addition, the other 7 descriptors 
(approximate-surface-area, LogP, refractivity, 
polarizability, hydration energy, volume and 
mass) were calculated by Hyperchem and then 
added to the descriptors pool. 

 
Figure 1. The architecture of RBFNN 

3. Methodology 
 
3.1 Theory of multiple linear regressions (MLR) 
 

In quantitative structure property or activity 
relationships, molecular descriptors are 
correlated with one or more response variable. If 
it is assumed that the relationship is well 
represented by a model that is linear in the 
regressed variables, a suitable model may be:  

nn XbXbXbbY ++++= Κ22110  
In this equation, Y is the property, that is, the 

dependent variable; 1X  to nX  represent the 
specific descriptors, while 1b  to nb  represent the 
coefficient of those descriptors, and 0b  is the 
intercept of this equation. 

A single MLR model was developed using the 
CODESSA software. The MLR model was built 
using training set and validated using an external 
prediction set. As is well know, MLR can’t be 
used to model complex data, since in most cases 
the number of explanatory variables exceeds the 
number of objects. Therefore, it is often used in 
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combination with the stepwise procedure for variable selection [21, 22]. In this study  
the number of explanatory variables is more than the number of samples, and because of the fact that a

 
No. Descriptor Coefficient Standard error t-test 
0 Intercept 227.59  67.68 3.363 

1 Average Complementary Information content 
(order 0) 0.68 0.31 2.226 

2 Approximate-surface-area 0.0078 0.0029 2.635 
3 HOMO-1 energy 1.73 0.40 4.323 
4 Max total interaction for a C-H bond -16.23 5.17 -3.141 

5 PNSA-2 Total charge weighted PNSA 
[Quantum-Chemical PC] -0.021 0.010 -2.062 

N= 78,R2=0.76, F=44.92, RMS=0.5307 
 

Table 2 Descriptors, Coefficients, Standard Error, and t-Test Values for the Linear model
 
linear model with a high number of terms is not 
very practical, especially when a high number of 
experimental descriptors are used, so stepwise 
variable selection was applied. 

The forward stepwise regression procedure 
consists simply in a step-by-step addition of the 
best descriptors to the model that leads to the 
smallest standard deviation (S), until there is 
no-other variable outside the equation that 
satisfies the selection criterion. The stepwise 
regression technique requires much less linear 
regressions and need not search for optimal 
variables in the whole data set. 
 
3.2 Theory of radial basis function neural 
network (RBFNN) 
 

In the research fields of QSAR or QSPR, 
nonlinear algorithms are usually used. The 
nonlinear methods can represent the complicate 
relationships between the activity or property of 
the molecules and the structures well. And the 
nonlinear models usually give better results. 
Artificial neural networks have been found much 
popularity in the studies. The theory of RBFNN 
has been extensively presented in some papers 
[23, 24].  Here only a brief description of the 
RBFNN principle was given. Figure 1 shows the 
basic network architecture. It consists of an input 
layer, a hidden layer, and an output layer.  
 

 
The input layer does not process the 

information; it only distributes the input vectors 
to the hidden layer. The hidden layer of RBFNNs 
consists of a number of RBF units (nh) and bias 
(bk). Each hidden layer unit represents a single 
radial basis function, with associated center 
position and width. Each neuron on the hidden 
layer employs a radial basis function as a 
nonlinear transfer function to operate on the 
input data. The most often used RBF is a 
Gaussian function that is characterized by a 
center (cj) and a width (rj). The RBF functions, 
by measuring the Euclidean distance between the 
input vector (x) and the radial basis function 
center (cj), performs the nonlinear transformation 
with RBF in the hidden layer as given below 

( ) ( )22
/exp jjj rcXXh −−=          (1) 

In which hj is the notation for the output of the 
jth RBF unit. For the jth RBF, cj and rj are the 
center and the width, respectively. The operation 
of the output layer is linear, which is given below 

( ) ( ) k

n

j
jkjk bXhwXy

k

+= ∑
=1

           (2) 

Where yk is the kth output unit for the input 
vector x, wkj is the weight connection between 
the kth output unit and the jth hidden layer unit, 
and bk is the bias. It can be seen from eqs 1 and 2, 
designing a RBFNN involves selecting centers, 
number of hidden layer units, width, and weights. 
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There are various ways for selecting the 
centers, such as random subset selection, 
K-means clustering, orthogonal least squares 
learning algorithm, RBF-PLS, etc. The widths of 
the radial basis function networks can either be 
chosen the same for all the units or can be chosen 
differently for each unit. In this paper, 
considerations were limited to the Gaussian 
functions with a constant width, which was the 
same for all units. The adjustment of the 
connection weight between hidden layer and 
output layer is performed using a least-squares 
solution after the selection of centers and width 
of radial basis functions. 

The overall performance of RBFNN is 
evaluated in terms of a root-mean-squared error 
(RMS) according to the equation below: 

( )

k

n

i
kk

n

yy
RMS

k

∑
=

−
= 1

2ˆ
    （3） 

Where ky  is the desired output and kŷ is the 
actual output of the network; kn  is the number 
of compounds in analyzed set.  

In a word, the performance of RBFNN is 
determined by the values of following parameters: 
The number nh of radial basis functions, the 
center cj and the width rj of each radial basis 
function, the connection weight wkj between the 
jth hidden layer unit and the kth output unit. The 
centers of RBFNN are determined with the 
forward subset selection method proposed by Orr 
[25, 26]. The optimal width was determined by 
experiments with a number of trials by taking 
into account the leave-one-out (LOO) 
cross-validation error. The one that gives a 
minimum LOO cross-validation error is chosen 
as the optimal value. 

All programs implementing RBFNN were 
written in M-file based on a MATLAB script for 
RBFNN. The scripts were run on a personal 
computer. 

 
4 Results and discussion 
 

4.1 Results of MLR 
 

MLR was used to develop the linear model for 
the prediction of LogT using training set. To 
determine the optimum number of descriptors, a 
variety of subset size (From 1 to 9) was 
investigated to build the model. When adding 
another descriptor did not improve the statistical 
ability of a model significantly, it was 
determined that the optimum subset size of 
descriptors had been achieved. Good correlations 
with the experimental LogT data were selected 
based on the squared correlation coefficient (R2), 
Fisher criterion (F), squared cross-validated 
correlation coefficient ( 2

cvR ) and standard error 
(s2) of the regression. 

In present study, we used the best correlation 
equation with five descriptors for the analysis. A 
detailed description of the linear model based on 
compounds in the training set is summarized in  
Table 2. 
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Figure 2. (a) Observed vs. calculated values for Log T 
by MLR 

 
With the test set, the prediction results were 

obtained, the statistical parameters were 
R2=0.619; F=10.58; and RMS =0.689. The 
predicted versus observed value based on MLR 
was shown in Table 1. Figure 2a shows the 
predicted versus observed LogT for all of the 97 
compounds studied, the training set and the test 
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set. Figure 2b shows the plot of residual vs. 
calculated Log T. 

 
4.2 Results of RBFNN 
 

After the establishment of a linear model, 
RBFNN is used to develop a non-linear model 
based on the same subset of descriptors. To obtain 
better results, the parameters that influence the 
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Figure 2 (b) Plot of residual vs. calculated LogT by 
MLR 
performance of RBFNN were optimized. The 
selection of the optimal width value for RBFNN 
was performed by systemically changing its 
value in the training step. The value that gives 
the best leave one out (LOO) cross-validation 
result was used in the model. 
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Figure 3 (a) Observed vs. calculated values for LogT by 

RBFNN 
For this data set, the optimal value was 

determined as 2.50. The corresponding number 
of centers (hidden layer nodes) of RBFNN is 13. 
The obtained model had a correlation coefficient 
R2 =0.863, F=221.4, with an RMS error of 
0.5231 for the training set. The statistical 
parameters of test set were R2 =0.76; F=22.7; and 
RMS=0.5281. The predicted results of the 
nonlinear models for both training and test set are 
shown in Table 1. Figure 3a shows the predicted 
versus observed LogT for all of the 97 
compounds studied, the training set and the test 
set. Figure 3b shows the plot of residual vs. 
calculated Log T. It gave a better random 
distribution of the residuals. Comparison of the 
correlation models obtained with RBFNN and 
MLR, it is clear that the whole performance of 
RBFNN is a little better than that obtained by 
MLR. 
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Figure 3( b) Plot of residual vs. calculated LogT by 

RBFNN 
In the present study, principal component 

analysis (PCA) was also used to study the 
variation among the chemicals. In PCA, the 
original data matrix is decomposed into new 
latent variables and the variation among the 
objects, here compounds, is illustrated in score 
plots. As can be seen from the Figure 4, the 
structures of the compounds are diverse in both 
sets. The training set with a broad representation 
of the chemistry space was adequate to ensure 
models’ stability and the diversity of prediction 
set can prove the predictive capability of the 
model. 
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4.3 Discussion of the input parameters 
 

Odor threshold of volatile organic compounds 
is one of the more commonly used criteria for 
studying compounds in air. These pungent 
sensations arise from the activation of receptors 
are present within the free endings of the 
trigeminal nerve [27]. Accordingly, chemesthesis 
is an aspect of the somatic sensory system. 
Therefore, the factors influencing the properties 
are complex. They are not only dependent on the 
characteristic of physiological factors, but also 
on the physicochemical properties and the 
molecular structure. From the view of chemistry, 
property is determined by structure. The aim of 
this study is to seek the structure factors that 
influence the odor threshold of the aliphatic 
alcohols. By interpreting the descriptors in the 
models, it is possible to gain some insight into 
structural factors that are likely to relate to the 
properties studied. 

There are five descriptors in the models, which 
encode different structure feature of each 
compound. Average complementary information 
content (order 0) (AIC0) belongs to topological 
descriptors. It describes the size, shape and 
branching information of the molecules and gives 
some information about the hydrodynamic 
friction factors. Another descriptors, 
approximate-surface-area (SA), also reflects the 
size or the shape of the molecular. A molecule 
with larger SA will be distributed less in air. The 

presence of this descriptor in our model 
underlines the importance of the molecular size 
for the process. They bring a positive 
contribution to the odor threshold. This 
observation implies that, all things being equal, 
increasing the value of the descriptors can lead to 
the larger values of odor threshold.  

HOMO-1 energy denotes the energy of the 
second highest occupied molecular orbital. 
HOMO-1 is crucially important in governing 
molecular reactivity. Molecules with high 
HOMO-1s are more able to donate their electrons 
and are hence relatively reactive compared with 
molecules with low-lying HOMO-1. That is, 
HOMO-1 may serve as a measure of the 
excitability of a molecule: all else being equal, 
the larger the energy, the more easily it will be 
excited. This can be seen from the positive 
coefficients in the model. 

Max total interaction for a C-H bond (IMAX) is 
a quantum mechanical energy-related descriptor. 
This group of descriptors characterizes the total 
energy of the molecule in different energy scales 
and the intramolecular energy distribution using 
different partitioning schemes. As we know, the 
PNSA-2 Total charge weighted PNSA 
[Quantum-Chemical PC] (PNSA-2) is one of the 
charged partial surface area (CPSA) type, which 
are based on the surface area of the whole 
molecule and on the charge distribution in the 
molecule, so they combine shape and electronic 
information to characterize the molecule, and 
therefore they encode features responsible for 
polar interactions between molecules. The above 
two descriptors have negative regression 
coefficient which indicate that the LogT is 
inversely proportional to these descriptors. 

 
5. Conclusion 

In this study, QSPR models for odor threshold 
of 97 aliphatic alcohols were developed using 
MLR and RBFNN based on some calculated 
chemical descriptors. Satisfactory results were 
obtained with the proposed method. Additionally, 
nonlinear RBFNN model based on the same sets 
of descriptors showed better predictive ability. 
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This paper provided a simple and straightforward 
way to predict LogT of aliphatic alcohols from 
their structures alone and gave some insight into 
structural features related to this property of the 
compounds. 
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